Кевларовая ткань. Что такое кевлар и как он останавливает пулю? Для изготовления чего нужен кевлар

Кевларовая ткань. Что такое кевлар и как он останавливает пулю? Для изготовления чего нужен кевлар

Судостроение


Авиационная промышленность

Температурные свойства

Теги: Кевлар, изготовитель кевлара, производство кевлара, кевлар, производитель кевлара, военные типа кевлара, баллистические кевлар, пулестойкость кевлара, защитные свойства кевлара, Арамидная ткань, арамидные ткани, гибридные ткани, арамиды Кевлар идет на конвейерные ленты арамидные ткани для пожарной одежды
Кевлар на бронежилеты

Сегодня Кевлар применяется в производстве продукции, требующей высоких показателей износостойкости материалов: альпинистские верёвки, оттяжки, шлемы, верх обуви, рюкзаки, лыжи, перчатки, а так же для изготовления спецодежды. Волокно Кевлар имеет небольшой вес и высокую стойкость к различного рода воздействиям. Обладает такими свойствами, как негорючесть и термостойкость. По данным, разработчиков, волокна Кевлар при равном весе в пять раз прочнее стали.

На фотографии пуля не смогла пробить арамидные ткани (кевлар).

Широкое использование кевлара находит:

Детская спортивная одежда, хоккейная форма.
Вкладыши в одежду в места повышенного износа.
Вкладыши в места вероятных трамв (колени, локти),
вероятные места поражения ножом (корманы, живот).
Хорошая защита от травматики (травматического оружия)
при конфликтах на дорогах.

Лучшая защита от пореза.
Перчатки, мотоциклетная, байкерская отдежда.
Хорошо идет даже на мощные музыкальные динамики и пожарную форму так как не горит.

Изначально материал разрабатывался для армирования автомобильных шин, в этом качестве он используется и теперь. Кроме того, кевлар используют как армирующее волокно в композитных материалах, которые получаются прочными и лёгкими.

Кевлар используется для армирования медных и волоконно-оптических кабелей (нитка по всей длине кабеля, предотвращающая растяжение и разрыв кабеля), в диффузорах акустических динамиков и в протезно-ортопедической промышленности для увеличения износостойкости частей углепластиковых стоп.

Кевларовое волокно также используется в качестве армирующего компонента в смешанных тканях, придающего изделиям из них стойкость по отношению к абразивным и режущим воздействиям, из таких тканей изготовляются, в частности, защитные перчатки и защитные вставки в спортивную одежду (для мотоспорта, сноубординга и т.п.).

В спецодежде ткань с кевларовым волокном используют в основном для усиливающих накладок в области колен (наколенники) и области локтей. Т.к. кевларовая ткань имеет высоки показатели на истираемость, то в её используют в одежде в тех местах где больше всего нагрузка на истираемость, порезы и проколы.

Структура кевлара. Высокая степень упорядоченности полимера и прочность обеспечиваются межмолекулярными водородными связями.

Механические свойства материала делают его пригодным для изготовления пуленепробиваемых жилетов. Это одно из самых известных применений кевлара.

В 1970-е годы одним из наиболее значительных достижений в разработке бронежилетов стало применение армирующего волокна из кевлара. Разработка бронежилета из кевлара Национальным институтом правосудия (National Institute of Justice) происходила в течение нескольких лет в четыре этапа. На первом этапе волокно тестировалось, чтобы определить, способно ли оно остановить пулю. Второй этап заключался в определении количества слоев материала, необходимого для предотвращения пробивания пулями различного калибра и летящими с разной скоростью, и разработке прототипа жилета, способного защищать сотрудников от наиболее распространенных угроз: пуль калибра.38 Special и.22 Long Rifle. К 1973 году был разработан жилет из семи слоев волокна из кевлара для полевых испытаний.

Судостроение

В последнее десятилетие кевлар получил распространение в судостроении. Из-за технологических сложностей и цены на кевлар, его применяют выборочно. Например, только в килевой части или по швам. Многие производители (такие, как верфи BAIA Yachts, Blue water, Danish yacht, Zeelander Yachts), делая в год не очень большое количество яхт, планомерно переходят на использование кевлара. Лидером в производстве яхт из кевлара считается Итальянская верфь Cranchi, которая производит яхты из кевлара размером от 11 до 21 метра.

Авиационная промышленность

Кевлар применяется в конструкции ряда беспилотных летательных аппаратов (например, RQ-11) для повышения защиты.

Температурные свойства

Кевлар сохраняет прочность и эластичность при низких температурах, вплоть до криогенных (−196 °C), более того, при низких температурах он даже становится чуть прочнее.

При нагреве кевлар не плавится, а разлагается при сравнительно высоких температурах (430—480 °C). Температура разложения зависит от скорости нагрева и продолжительности воздействия температуры

Теги: Кевлар, изготовитель кевлара, производство кевлара, кевлар, производитель кевлара, военные типа кевлара, баллистические кевлар, пулестойкость кевлара, защитные свойства кевлара, Арамидная ткань, арамидные ткани, гибридные ткани, арамиды Кевлар идет на конвейерные ленты арамидные ткани для пожарной одежды Кевлар на бронежилеты

Кевла́р (англ. Kevlar) - торговая марка пара-арамидного (полипарафенилен-терефталамид) волокна, выпускаемого фирмой DuPont. Кевлар обладает высокой прочностью (в пять раз прочнее стали, предел прочности σ0= 3620 МПа). Впервые кевлар был получен группой Стефани Кволек в 1964, технология производства разработана в 1965 году, с начала 1970-x годов начато коммерческое производство.

Непрерывное волокно: Арамидные волокна

Арамидные волокна относятся к классу ароматических полиамидных волокон. Они представляют собой химические волокна, полученные на основе линейных волокнообразующих полиамидов, в которых не менее 85 % амидных групп непосредственно связано с двумя ароматическими кольцами. Такие волокна отличаются высокими значениями прочности, модуля упругости, теплостойкости и химстойкости. Впервые они стали известны под маркой «кевлар».

Получение и производство

Арамидные волокнообразующие полимеры получают методом поликонденсации в растворе при низкой температуре (5... 10 °C). Полимер получают добавлением к раствору реагентов при интенсивном перемешивании. Полимер выделяется из исходного раствора в виде геля или крошки, затем он промывается и высушивается.

Полученный полимер растворяется в одной из сильных кислот, например, в концентрированной серной кислоте. Из раствора полимера методом экструзии через фильеры формуются волокна и нити. Температура формования 50 ... 100 °C. Экструдированные волокна проходят небольшую воздушную прослойку (5-20 мм) и попадают в осадительную ванну с холодной водой (менее 4 °C). Волокно промывается, собирается на приемном устройстве и высушивается. На выходе из осадительной ванны волокно может подвергаться дополнительной обработке (вытягивание, термообработка) для повышения его механических характеристик. Свойства волокон могут зависить от состава исходного сырья, свойств использованных растворителей, условий технологического процесса получения волокон и условий термообработки сформованных нитей.

Волокно кевлар представляет собой кристаллизующийся полимер. Химическая структура волокна отличается высокой степенью ориентированности и жесткости. Эти характеристики, в частности, обусловлены наличием в структуре большого количества ароматических (бензольных) колец. По своей структуре волокно кевлар может быть отнесено к сетчатым полимерам.

Жесткие полимерные цепи находятся в распрямленном состоянии и образуют очень плотную упаковку в объеме волокна, что определяет высокие механические свойства волокна типа кевлар. Кристаллическая природа полимера обеспечивает высокую термическую стабильность волокон, а наличие ароматических колец в структуре макромолекулы обусловливает химическую стабиль-ность волокон. Благодаря жесткой сетчатой структуре макромолекул арамидные волокна при нагревании не испытывают никаких фазовых превращений вплоть до температуры термического разложения.

Волокна кевлар производятся в виде технических нитей с различной линейной плотностью и структурой. Число элементарных волокон в типичных нитях может меняться от 130 до 1000 при изготовлении тканей и от 500 до 10000 при изготовлении канатов и корда. Кевлар выпускается также в виде пряжи, ровинга и тканей. Волокна непрозрачны, обычный диаметр около 11 мкм.

Свойства арамидных волокон

Арамидные нити среди всех органических волокон имеют наиболее высокие эксплуатационные характеристики. Они отличаются устойчивостью к воздействию пламени, высоких температур, органических растворителей, нефтепродуктов и т. п. Арамидные волокна менее хрупки по сравнению с углеродными и стеклянными волокнами и пригодны для переработки на обычном оборудовании текстильных производств.

Арамидные волокна отличаются наиболее высокими значениями прочности и модуля упругости среди органических волокон.

Повышение температуры приводит к снижению прочности арамидных волокон от 3,5 ГПа до 2,7 ГПа. Волокна практически не проявляют ползучести под нагрузкой. Во всем интервале нагрузок вплоть до разрушения зависимость напряжений от деформаций является линейной. На свойства арамидных волокон заметное влияние оказывает скручивание нитей: при повышении степени кручения модуль упругости и прочность волокон заметно снижаются. Полагают, что этот эффект связан с поверхностным повреждением волокон при скручивании. Это предположение подтверждается результатами испытаний волокон на усталость, которые показывают, что волокна могут выдерживать большое число циклов нагружения, если они не испытывают поверхностного трения. При наличии такого трения долговечность волокон очень невысока.

Влияние различных факторов на механические свойства КМ, армированных арамидными волокнами

Влияние связующего на механические свойства композита определяется в основном двумя параметрами: адгезией и модулем упругости. Эти два фактора влияют на тип разрушения КМ и, в конечном счете, определяют уровень прочностных свойств композита. Низкомодульные связующие обычно не способны обеспечить перераспределение нагрузки между армирующими волокнами во всем объеме композита. При этом отдельные волокна деформируются независимо друг от друга. Разрушение (разрыв) одного волокна в таких случаях может привести к значительному перераспределению нагрузки в его окрестности и перенапряжению соседних волокон. Как следствие, в таких случаях часто наблюдается лавинообразный процесс разрушения материала. Средняя прочность волокна в композите оказывается низкой.

Если же выбранное сочетание адгезии и модуля упругости обеспечивает приблизительно равномерное распределение нагрузок между всеми волокнами материала, то средняя (эффективная) прочность композита будет иметь более высокое значение. Обычно на практике удается реализовать некоторое среднее значение потенциальной прочности материала.

С увеличением объемного содержания волокна прочность материала обычно сначала увеличивается, а при достижении некоторого уровня наполнения стабилизируется или даже снижается.

Повышение температуры приводит к некоторому снижению прочности микропластиков из арамидных волокон. Понижение температуры на прочностные свойства практически не влияет.

Зависимость напряжений от деформаций композитов на основе арамидных волокон близка к линейной. Выдерживание образцов изготовленных из однонаправленного композита на основе арамидных волокон под постоянной нагрузкой в течение длительного времени сопровождается увеличением их деформации - ползучестью. С увеличением уровня нагрузки деформация, обусловленная ползучестью, растет, причем, при продолжительном нагружении зависимость деформации от времени становится линейной для широкого интервала начальных нагрузок.

Жесткость и прочность композиционных волокнистых материалов (КВМ) на основе арамидных волокон при поперечном по отношении к направлению армирования нагружении значительно меньше, чем при нагружении в направлении армирования. Имеются разные данные о характеристиках композита при таком виде нагружении, которые зависят от метода испытаний, но все они показывают, что нагружение в поперечном направлении является невыгодным с точки зрения использования потенциальных прочностных качеств материала.

Проблема повышения характеристик материала при поперечном нагружении обычно решается путем дополнительного включения в композит армирующих волокон других видов, например, углеродных или стеклянных. Выбор углеродных волокон связан с тем, что их температурные характеристики (коэффициент температурного расширения) сходны с характеристиками арамидных волокон. Такие композиты принято называть «гибридными». Кевлар-углеродные композиты отличаются меньшей стоимостью и меньшей хрупкостью по сравнению с углеродными, что делает их достаточно привлекательными, несмотря на некоторое снижение прочности по сравнению с углеродными материалами.

Еще один способ повышения эксплуатационных свойств однонаправленных композитов - добавление к основному армирующему материалу небольшой объемной доли коротко нарезанных волокон (штапеля). Такие волокна ориентированы в материале менее однородно по сравнению с длинными волокнами и обеспечивают дополнительное перераспределение нагрузок в объеме материала помимо связующего. Предел прочности и модуль упругости таких материалов обычно ниже, чем у однонаправленных, но работа, которую необходимо затратить на их разрушение значительно выше (примерно в полтора раза).

Композиты на основе арамидных волокон

Высокие механические свойства арамидных волокон сами по себе еще не гарантируют наличия высоких механических свойств у композитов на их основе. Характеристики композита во многом определяются взаимодействием волокон со связующим. Такое взаимодействие приводит к перераспределению внешних нагрузок между элементами структуры армирования композита. Поэтому оценка характеристик композита должна проводиться не только по свойствам его компонентов, но и по свойствам некоторых характерных объемов материала, обладающих всеми характерными характеристиками композита: структурой армирования, объемным соотношением компонентов и т. п.

На практике в качестве таких характерных объемов часто рассматривают стренги (жгуты), пропитанные связующим и подвергнутые отверждению. Такие стренги, предназначенные для проведения экспериментальных исследований свойств композита, называют «микропластиками». Технология изготовле¬ния микропластиков повторяет технологию изготовления реальных изделий из композита за исключением объемов производства. При проведении подобных исследований необходимо учитывать, что на их результаты могут оказывать влияние такие факторы, как толщина стренги (жгута), метод испытаний и другие факторы. Влияние размеров образцов на результаты испытаний является одним из наиболее неприятных факторов, существенно затрудняющих анализ экспериментальных данных. Такое влияние обычно плохо поддается оценке и носит название «масштабного эффекта».

Применение КВМ на основе арамидных волокон

КВМ на основе арамидных волокон (кевлара) применяются в авиации при изготовлении частей несущих конструкций, переборок, дверей, полов, обтекателей. При изготовлении военной техники и снаряжения эти материалы находят применение при производстве корпусов ракетных двигателей, пулезащитной одежды, легких бронеплит и т. п. Применение кевлара в данных изделиях связано с малой плотностью и высокой стойкостью к ударным нагрузкам.

Невысокая плотность, хорошие демпфирующие свойства, гибкость способствуют применению кевлара при изготовлении спортивного снаряжения: лодок, клюшек и т. д.

Волокна кевлара в чистом виде либо в сочетании с каучуком используются при изготовлении канатов, которые находят применение в судостроении и горном деле, где они используются вместо стальных канатов. Достоинствами таких канатов являются малый вес, высокая прочность, высокая коррозионная стойкость и хорошие электроизоляционные свойства. Кевлар находит применение при изготовлении шин в качестве корда, где сочетание таких свойств, как малая плотность, хорошая вибростойкость, высокая прочность и коррозионная стойкость делают его более выгодным по сравнению с кордом из вискозных, полиэфирных волокон и стальной проволоки.

Многие слышали название «кевлар». Из него шьют бронежилеты, делают каски. Немало людей наделяют его почти сверхъестественными способностями, считая уникальным материалом, защищающим от пуль. Разумеется, мы не могли обойти его вниманием и попробовали разобраться что же это такое.

Что про кевлар говорит Википедия:

Кевлар (англ. Kevlar) - торговая марка пара-арамидного (полипарафенилен-терефталамид) волокна, выпускаемого фирмой DuPont. Кевлар обладает высокой прочностью (в пять раз прочнее стали, предел прочности σ0= 3620 МПа). Впервые кевлар был получен группой Стефани Кволек в 1964, технология производства разработана в 1965 году, с начала 1970-х годов начато коммерческое производство.

В настоящее время арамидные волокна производятся по всему миру под разными торговыми марками. Но, наподобие того, как по всему миру копировальные аппараты называют по названию их фирмы-создателя Xerox, так же арамидные материалы в быту называют словом Kevlar.

Что же особенного в арамидном волокне?

Арамидное волокно характеризуется высокой удельной прочностью при растяжении; высоким сопротивлением удару и динамическим нагрузкам. Кроме того, волокно и его разновидности является огнеупорным.

Изначально кевлар применялся для армирования автомобильных шин, но из-за его лёгкости композитные материалы на его основе, стали использовать в авиации и космической промышленности. Кроме того, из кевлара изготавливаются сверхпрочные тросы.

Фактически, именно его сопротивляемость удару при низкой плотности и сделали его отличным материалом для производства бронезащиты.

Несмотря на все свои достоинства арамидное волокно всё же имеет и недостатки. К ним относятся: старение, «водобоязнь» и цена. При намокании арамидное волокно теряет в прочности почти в два раза. При высыхании кевлар восстанавливает свои качества, но с течением времени механическая прочность пропадает безвозвратно. Впрочем, процесс этот идёт не слишком быстро - большинство производителей дают гарантию на 5 лет. А специальная обработка решает проблему с намоканием.

Кроме того, арамидное волокно с трудом поддаётся окрашиванию, поэтому практически всегда изделия из него имеют жёлтый цвет.

Помимо арамидных волокон, в современных бронежилетах также часто используют полиэтилен высокой плотности (ПВП). По сути – тот же материал, из которого шьют мешки и сумки-баулы. Несколько десятков тончайших листов ПВП способны остановить пистолетную пулю.

Но кевлар, ПВП и прочие материалы, мало что могут противопоставить мощным винтовочным патронам. Поэтому они используются для легкой защиты, или же как дополнения в бронежилетах с металлическими бронепластинами.

(полипарафенилен-терефталамид) волокна, выпускаемого фирмой DuPont . Кевлар обладает высокой прочностью (предел прочности σ 0 = 3620 МПа). Впервые кевлар был получен группой Стефани Кволек в 1964, технология производства разработана в 1965 году , с начала 1970-х годов начато коммерческое производство.

Применение

Изначально материал разрабатывался для армирования автомобильных шин , для чего он используется и теперь. Кроме того, кевлар используют как армирующее волокно в композитных материалах , которые получаются прочными и лёгкими.

Кевлар используется для армирования медных и волоконно-оптических кабелей (нитка по всей длине кабеля, предотвращающая растяжение и разрыв кабеля), в диффузорах акустических динамиков и в протезно-ортопедической промышленности для увеличения износостойкости частей углепластиковых стоп.

Кевларовое волокно также используется в качестве армирующего компонента в смешанных тканях , придающего изделиям из них стойкость по отношению к абразивным и режущим воздействиям, из таких тканей изготовляются, в частности, защитные перчатки и защитные вставки в спортивную одежду (для мотоспорта , сноубординга и т. п.). Также он используется в обувной промышленности для изготовления антипрокольных стелек.

Средства индивидуальной бронезащиты

Механические свойства материала делают его пригодным для изготовления средств индивидуальной бронезащиты (СИБ) - бронежилетов и бронешлемов . Исследования второй половины 1970-х годов показали, что волокно марки кевлар-29 и его последующие модификации при использовании в виде многослойных тканевых и пластиковых (тканевополимерных) преград показывает наилучшее сочетание скорости поглощения энергии и длительности взаимодействия с ударником, обеспечивая тем самым относительно высокие, при данной массе преграды, показатели противопульной и противоосколочной стойкости . Это одно из самых известных применений кевлара.

В 1970-е годы одним из наиболее значительных достижений в разработке бронежилетов стало применение армирующего волокна из кевлара. Разработка бронежилета из кевлара Национальным институтом правосудия США (англ. National Institute of Justice ) происходила в течение нескольких лет в четыре этапа. На первом этапе волокно тестировалось, чтобы определить, способно ли оно остановить пулю. Второй этап заключался в определении количества слоев материала, необходимого для предотвращения пробивания пулями различного калибра и летящими с разной скоростью, и разработке прототипа жилета, способного защищать сотрудников от наиболее распространенных угроз: пуль калибра .38 Special и .22 Long Rifle . К 1973 году был разработан жилет из семи слоев волокна из кевлара для полевых испытаний. Было установлено, что при намокании защитные свойства кевлара ухудшались. Способность защищать от пуль также уменьшалась после воздействия ультрафиолета, в том числе солнечного света. Химчистка и отбеливатели также негативно сказывались на защитных свойствах ткани, так же, как и неоднократные стирки. Чтобы обойти эти проблемы, был разработан водостойкий жилет, имеющий покрытие из ткани для предотвращения воздействия солнечных лучей и других отрицательно влияющих факторов.

Судостроение

См. также

Напишите отзыв о статье "Кевлар"

Примечания

Литература и источники

  • О. Лисов. «Кевлар - перспективный материал военного назначения» // «Зарубежное военное обозрение», № 2, 1986. стр.89-90.

Отрывок, характеризующий Кевлар

– Возьми, возьми ребенка, – проговорил Пьер, подавая девочку и повелительно и поспешно обращаясь к бабе. – Ты отдай им, отдай! – закричал он почти на бабу, сажая закричавшую девочку на землю, и опять оглянулся на французов и на армянское семейство. Старик уже сидел босой. Маленький француз снял с него последний сапог и похлопывал сапогами один о другой. Старик, всхлипывая, говорил что то, но Пьер только мельком видел это; все внимание его было обращено на француза в капоте, который в это время, медлительно раскачиваясь, подвинулся к молодой женщине и, вынув руки из карманов, взялся за ее шею.
Красавица армянка продолжала сидеть в том же неподвижном положении, с опущенными длинными ресницами, и как будто не видала и не чувствовала того, что делал с нею солдат.
Пока Пьер пробежал те несколько шагов, которые отделяли его от французов, длинный мародер в капоте уж рвал с шеи армянки ожерелье, которое было на ней, и молодая женщина, хватаясь руками за шею, кричала пронзительным голосом.
– Laissez cette femme! [Оставьте эту женщину!] – бешеным голосом прохрипел Пьер, схватывая длинного, сутоловатого солдата за плечи и отбрасывая его. Солдат упал, приподнялся и побежал прочь. Но товарищ его, бросив сапоги, вынул тесак и грозно надвинулся на Пьера.
– Voyons, pas de betises! [Ну, ну! Не дури!] – крикнул он.
Пьер был в том восторге бешенства, в котором он ничего не помнил и в котором силы его удесятерялись. Он бросился на босого француза и, прежде чем тот успел вынуть свой тесак, уже сбил его с ног и молотил по нем кулаками. Послышался одобрительный крик окружавшей толпы, в то же время из за угла показался конный разъезд французских уланов. Уланы рысью подъехали к Пьеру и французу и окружили их. Пьер ничего не помнил из того, что было дальше. Он помнил, что он бил кого то, его били и что под конец он почувствовал, что руки его связаны, что толпа французских солдат стоит вокруг него и обыскивает его платье.
– Il a un poignard, lieutenant, [Поручик, у него кинжал,] – были первые слова, которые понял Пьер.
– Ah, une arme! [А, оружие!] – сказал офицер и обратился к босому солдату, который был взят с Пьером.
– C"est bon, vous direz tout cela au conseil de guerre, [Хорошо, хорошо, на суде все расскажешь,] – сказал офицер. И вслед за тем повернулся к Пьеру: – Parlez vous francais vous? [Говоришь ли по французски?]
Пьер оглядывался вокруг себя налившимися кровью глазами и не отвечал. Вероятно, лицо его показалось очень страшно, потому что офицер что то шепотом сказал, и еще четыре улана отделились от команды и стали по обеим сторонам Пьера.
– Parlez vous francais? – повторил ему вопрос офицер, держась вдали от него. – Faites venir l"interprete. [Позовите переводчика.] – Из за рядов выехал маленький человечек в штатском русском платье. Пьер по одеянию и говору его тотчас же узнал в нем француза одного из московских магазинов.
– Il n"a pas l"air d"un homme du peuple, [Он не похож на простолюдина,] – сказал переводчик, оглядев Пьера.
– Oh, oh! ca m"a bien l"air d"un des incendiaires, – смазал офицер. – Demandez lui ce qu"il est? [О, о! он очень похож на поджигателя. Спросите его, кто он?] – прибавил он.
– Ти кто? – спросил переводчик. – Ти должно отвечать начальство, – сказал он.
– Je ne vous dirai pas qui je suis. Je suis votre prisonnier. Emmenez moi, [Я не скажу вам, кто я. Я ваш пленный. Уводите меня,] – вдруг по французски сказал Пьер.
– Ah, Ah! – проговорил офицер, нахмурившись. – Marchons!
Около улан собралась толпа. Ближе всех к Пьеру стояла рябая баба с девочкою; когда объезд тронулся, она подвинулась вперед.
– Куда же это ведут тебя, голубчик ты мой? – сказала она. – Девочку то, девочку то куда я дену, коли она не ихняя! – говорила баба.
– Qu"est ce qu"elle veut cette femme? [Чего ей нужно?] – спросил офицер.
Пьер был как пьяный. Восторженное состояние его еще усилилось при виде девочки, которую он спас.
– Ce qu"elle dit? – проговорил он. – Elle m"apporte ma fille que je viens de sauver des flammes, – проговорил он. – Adieu! [Чего ей нужно? Она несет дочь мою, которую я спас из огня. Прощай!] – и он, сам не зная, как вырвалась у него эта бесцельная ложь, решительным, торжественным шагом пошел между французами.
Разъезд французов был один из тех, которые были посланы по распоряжению Дюронеля по разным улицам Москвы для пресечения мародерства и в особенности для поимки поджигателей, которые, по общему, в тот день проявившемуся, мнению у французов высших чинов, были причиною пожаров. Объехав несколько улиц, разъезд забрал еще человек пять подозрительных русских, одного лавочника, двух семинаристов, мужика и дворового человека и нескольких мародеров. Но из всех подозрительных людей подозрительнее всех казался Пьер. Когда их всех привели на ночлег в большой дом на Зубовском валу, в котором была учреждена гауптвахта, то Пьера под строгим караулом поместили отдельно.

В Петербурге в это время в высших кругах, с большим жаром чем когда нибудь, шла сложная борьба партий Румянцева, французов, Марии Феодоровны, цесаревича и других, заглушаемая, как всегда, трубением придворных трутней. Но спокойная, роскошная, озабоченная только призраками, отражениями жизни, петербургская жизнь шла по старому; и из за хода этой жизни надо было делать большие усилия, чтобы сознавать опасность и то трудное положение, в котором находился русский народ. Те же были выходы, балы, тот же французский театр, те же интересы дворов, те же интересы службы и интриги. Только в самых высших кругах делались усилия для того, чтобы напоминать трудность настоящего положения. Рассказывалось шепотом о том, как противоположно одна другой поступили, в столь трудных обстоятельствах, обе императрицы. Императрица Мария Феодоровна, озабоченная благосостоянием подведомственных ей богоугодных и воспитательных учреждений, сделала распоряжение об отправке всех институтов в Казань, и вещи этих заведений уже были уложены. Императрица же Елизавета Алексеевна на вопрос о том, какие ей угодно сделать распоряжения, с свойственным ей русским патриотизмом изволила ответить, что о государственных учреждениях она не может делать распоряжений, так как это касается государя; о том же, что лично зависит от нее, она изволила сказать, что она последняя выедет из Петербурга.

В настоящее время кевлар стал привычным компонентом одежды и экипировки людей, чья жизнь постоянно подвергается опасности: военных и силовиков, космонавтов и исследователей, спортсменов и пожарных. Кевларовые волокна используют везде, где требуется повышенная прочность, начиная от автомобильных шин и заканчивая корпусами яхт, область их применения постоянно расширяется, а технология получения – усовершенствуется . Этот материал был получен полвека тому назад, и многим покажется странным, что его автором стала женщина.

Как появился кевлар?

Символично, что изобретательница этого уникального волокна Стефани Кволек в детстве любила шить одежду для кукол. После школы она получила специальность химика в университете Карнеги, но мечтала о медицине. Чтобы заработать средства для обучения в университете, в 1946 году девушка стала работать в знаменитом концерне Дюпон, и вскоре поняла, что ее призвание – все-таки химия. В 1964 году группа Кволек работала над усовершенствованием получения полиарамидов – полимерных веществ со стержнеобразной структурой, которые могли бы заменить стальной корд в шинах. Отказавшись от метода расплава, Стефани смогла получить необычного вида раствор, который при пропускании через фильеры превращался в арамидные нити.

Когда полученное волокно стали тестировать на прочность, исследователи решили, что аппаратура сломалась – показатели прочности нового материала были в пять раз больше, чем у стали.

Новый материал, получивший название кевлар, получил коммерческое применение в семидесятых годах. Его стали использовать для производства шин, кордовых лент, композитных материалов. В это же время на высокую прочность полиарамидных волокон обратили внимание военные и силовые структуры, целью которых была разработка индивидуальных средств защиты. Идея бронежилета появилась еще во время Первой мировой войны (ее автором был писатель Конан Дойл), но традиционные металлические пластины были тяжелыми и сковывали движения.

Специалисты американского Национального института правосудия несколько лет проводили тщательные исследования, в ходе которых доказали, что устойчивость к пулевому выстрелу для наиболее распространенного 38 калибра обеспечивает кевларовая ткань в семь слоев. Последний этап полевых испытаний показал, что прочность такого бронежилета уменьшается при его намокании и при воздействии УФ-лучей. Также было установлено, что изделия из кевларовой ткани ухудшают свои защитные свойства после нескольких стирок, и что они не переносят отбеливания и химчистки.

Результатом проведенных разработок стал кевларовый бронежилет с покрытием из водостойкой ткани, обеспечивающей защиту армированного слоя от воды и солнца . Кроме того, в качестве средств индивидуальной защиты стали применять кевларовые каски, перчатки, стельки обуви и др.

Свойства арамидных волокон

Кроме высокой прочности, кевлар обладает множеством других уникальных свойств, а именно:

  • при контакте с огнем и высокими температурами это волокно не горит, не дымится и не плавится;
  • кевлар не токсичен и не взрывоопасен;
  • температура его терморазложения составляет 430-450 градусов;
  • прочность армидных волокон начинает постепенно снижаться при нагреве более 150 градусов;
  • при замерзании кевлар становится только прочнее, он способен выдерживать криогенные температуры (до -200 градусов);
  • этот материал является электроизолятором.


К тому же ткань из кевлара отличается мягкостью, гигроскопичностью и способностью к воздухообмену, и вполне комфортна при использовании. Правда, это не относится к одежде, предназначенной для работы в условиях открытого огня и высоких температур. Для повышения термостойкости кевлар покрывают алюминием. Материал из такого волокна надежно защищает от мощного теплового излучения, контакта с раскаленными до 500 градусов поверхностями, а также от брызг раскаленного металла.

Следует также добавить, что этот материал довольно легок – один метр ткани весит 30-60 г, и хотя он не дешев (от 30 долларов за квадратный метр), его прекрасные защитные свойства вполне оправдывают такие расходы. Несколько дешевле стоят защитные материалы, армированные кевларовыми нитями, что придает им стойкость к разрыву и абразивному истиранию. Такие ткани используют для защитных вставок в рабочей и спортивной одежде, перчаток, а также в качестве износостойких стелек. Уход за изделиями из них чрезвычайно прост. Их не следует:

  • часто стирать;
  • чистить химическими реагентами;
  • подвергать действию солнечных лучей.

Где применяется кевлар?

Данное высокопрочное волокно находит самое разнообразное применение – от авиационной и космической промышленности до спортивной и туристической одежды. На рынок кевлар поступает в виде нитей, корда, ткани, а также как составляющая композитных и смесовых материалов . Основными способами его применения являются.

просмотров